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FIG . 5. Oscillogram of coherent pulse/cw signals. 

now mixed with the pulse echo signal, interference between 
the two signals will occur. Constructive interference will 
result when the phase dilIerence between the two signals is 
T7r radians, where r is an even integer. For all other phase 
differences, destructive interference will occur, maximum 
interference resulting when r is an odd integer. By adjust
ing the level of cw to approxinntely that of the early 
echoes in the pulse echo system and varying the frequency 
of the VFO, frequencies corresponding to V(n-m), ..• Vn, 

••• , V(n+p) of the cw technique can be found. These fre
quencies correspond to phase differences of T7r rad, where 
r is an even integer, that is when the pulse echo and cw 
signals are in phase. When the cw and pulse signals are 
out of phase, a sinusoidal modulation signal appears on 
the pulse echo envelope. The VFO frequency at which zero 
modulation occurs can rapidly be found with great accu
racy by adjusting the VFO frequency and observing the 
pulse echo pattern. Figure 5 shows three oscillograms ob
tained when the VFO is tuned (a) to a frequency v'" for 
zeto modulation, i.e., when the phase difference between 
pulse and cw signals is exactly T7r rad and r is an even 
integer; (b) to a slightly greater frequency (vn+ov) so that 
the phase difference is approximately 0.03 rad greater than 
T7r; (c) to a slightly lower frequency (Vn-ov), so that the 
phase difference is approximately 0.03 rad less than T7r. 

For these oscillograms, Vn= 10.2202 Mc, ~vav=0.1433 Mc 
ov~S kc. It should be noted that the nonsinusoidal modu
lation of the echo envelope of Fig. 5(a) is not due to the 
mixing of cw and pulse signals, but rather to the geometry 

of the sample and possibly to diffraction effects.7 The 
greatest sensitivity in determining the frequencies for 
which the phase difference between pulse and cw signals is 
zero is achieved when the amplitude of the cw signal is 
made approximately equal to the amplitude of the early 
echoes in the pulse echo train as shown in Fig. 5. 

The velocity of sound v can then be calculated using 
either Eq. (1) or Eqs. (2) and (3) of the cw method. Equa
tion (1) can be simplified to 

(4) 

if the accuracy of velocity measurement is required to 
within a few parts in 102• This method can only be adopted 
when m7.jms<1O- 2• 

5. INSTRUMENTATION 

The equipment used in the coherent pulse/cw technique 
is shown in block diagram form in Fig. 4. Pulses of rf are 
generated by gating and amplifying the output of a VFO. 
The amplified rf pulses are coupled, via a matching net
work, to the quartz transducer, which is bonded to the 
sample. The matching network also serves to match the 
receiver to the transducer and to the cw rf source. The rf 
attenuator can be varied to adjust the level of cw signal 
being mixed with the pulse echo signals. The resultant 
signal is amplified by a wide band rf amplifier and subse
quently detected before being displayed on a cathode ray 
tube. An electronic counter is used to measure the VFO 
frequency. A permanent record of the frequencies V (n - mJ, 

••• V'" ••• V(n+p) can be obtained by using a digital 
printer coupled to the electronic counter. 

Most of the units indicated in Fig. 4 are commercially 
available. Those used for the measurements described here 
are the following: General Radio unit oscillator type 1211B, 
Hewlett-Packard step attenuators types 355A and 355B, 
Beckman electronic counter type 7170, Beckman digital 
printer type 1453, Measurements Corporation pulse gen
erator type 79B, Tektronix oscilloscope type 585. The 
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FIG. 6. Gated rf power ampliJier. 

7 A. Seki, A. Granato, and R. Truell, J. Acoust . Soc. Am. 28, 230 
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FIG. 7. Matching 
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wide band rf amplifier and detector was a modified surplus 
radar receiver. This unit can readily be replaced by a tuned 
commercial amplifier with a bandwidth of several mega
cycles and a gain of approximately 80 dB. The circuit of 
the gated rf power amplifier is shown in Fig. 6. The screen 
grid of each stage is held at a negative potential of 4 V. 
This bias is sufficient to hold each stage at cutoff. When 
a positive-going gating pulse of approximately 150 V is 
applied to the "gating pulse input" connector, all stages 
are simultaneously driven up to normal operating condi
tions, and the rf input signal is amplified for this short 
duration. Rejection of the cw signal between gating pulses 
is approximately 90 dB. This simple circuit provides ade
quate rf power when the maximum output from the VFO 
is coupled to the input. The circuit diagram of the matching 
network is given in Fig. 7. The network shown is for 
20 Mc. L 1, L 2, and Rl are switched to appropriate values 
when used at other frequencies . Connection to the cw 
source is made via a BNC T-connector to the "output" 
terminal. 

6. RELATIONS BETWEEN ACOUSTIC VELOCITIES, 
ELASTIC CONSTANTS, AND DEBYE TEMPERA

TURE FOR CUBIC CRYSTALS 

A strong analogy exists between the propagation of 
elastic and light waves in crystals, although the three 
surfaces-velocity, inverse, and wave-are considerably 
more complicated in the mechanical case. An expression 
of the condition for the existence of plane elastic waves in 
an anisotropic medium leads to a cubic equation in PyP, 
the elastic constants, and the direction of the wave normal, 
which yields three real positive roots for any value of 
(t,m,n), the direction cosines of the wave normal. Associ
ated with each velocity is a uniquely defined displacement 
vector, one quasilongitudinal and two quasi transverse. 
These three vectors form an orthogonal triad. The plot of 
v(t,m,n) gives the velocity surface for any medium; for 
a cubic crystal the velocity equation is 

(5) 

where H=pv2-C44; a=cll-c44; b=C12+C44; C=CU-CI2 
- 2C44; A = m2n2+n2f2+f2m2; B = f2m2n2; p is the density; 
v is the velocity. 

In general, the normal to the wave surface does not 
coincide with the radius vector, or wave normal, and the 
propagation of energy takes place along three extraordi
nary rays; only when the wave normal and the normal to 
the wave surface coincide does the energy travel along the 
wave normal. A crystal of cubic symmetry possesses three 
such directions, viz., the [100J, [110J, and [111J types of 
direction. Hence, for propagation in the [looJ direction, 
each ray is an ordinary ray, and as t= 1, m=n=O, Eq. (5) 
yields the velocities 

where VL is the velocity of compressional waves and 

VT 1 =VT2= (c14I p)!, 

(6) 

(7) 

where VTl and VT2 are the velocities of the two shear waves. 
For propagation in the [110J direction, each ray is an 

ordinary ray, as the wave nornlal and wave surface normal 
coincide. For this direction t=m= 1/ V2 and n=O and Eg. 
(5) yields three unique velocities, 

VL= [(cu+C12+2c44)/2pJt, 

VTl = (c441 p)!, 

VT 2 = [(Cn-C12)/ 2p Jt. 

(8) 

(9) 

(10) 

For propagation in the [111J direction, t=m=n= l/Y3 
yielding the following velocities from Eq. (5), 

VL= [(Cn+ 2c12+4c(4)/3p J!, (11) 

VTl = V7'2= [(Cn-CI2+c44)/3pJt. (12) 

Along this direction, the wave normal coincides with the 
normal to the compressional velocity surface, and he]lce 
energy propagates along the wave normal. The velocity 
of the shear waves is degenerate and consequently the dis
placement vectors are not uniquely defined, but may be in 
any direction contained by the plane of the wave. Also the 
nomal to the velocity surface is not uniquely defined but 
may take up an infinity of positions, associated with dif
ferent displacement vectors. This results in a cone of extra
ordinary rays giving rise to internal conical refraction.s 

The semi-angle of this cone is given by 

(13) 

where C is as defined for Eq. (5) and is the normal measure 
of the degree of elastic anisotropy possessed by a cubic 
crystal. 

The Debye temperature () can be evaluated from the 
equation9 

()= (h/ k)[3ql\Tp/ 47rMJtvm, (14) 

where h is Planck's constant, k is Boltzmann's constant, 

8 J. de Klerk and M. J. P. Musgrave, Proc. Phys. Soc. (London) 
68B, 81 (1955). 

9 O. L. Anderson, J. Phys. Chern . Solids 24,909 (1963). 
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